Hypoxia regulates the adenosine transporter, mENT1, in the murine cardiomyocyte cell line, HL-1.

نویسندگان

  • Naz Chaudary
  • Zlatina Naydenova
  • Irina Shuralyova
  • Imogen R Coe
چکیده

OBJECTIVE Adenosine is an important paracrine hormone in the cardiovascular system. Adenosine flux across cardiomyocyte membranes occurs mainly via equilibrative nucleoside transporters (ENTs). The role of the ENTs in adenosine physiology is poorly understood, particularly in response to metabolic stress such as hypoxia. Therefore, we investigated the effects of chronic hypoxia on ENT1, the predominant ENT isoform in cardiomyocytes. METHODS HL-1 cells (immortalized murine cardiomyocytes) were exposed to hypoxia (2% O2) for 0-20 h. Cell viability, lactate dehydrogenase (LDH) release, glucose uptake, GLUT1 and GLUT4 protein, adenosine uptake, PKC activity, translocation profiles of PKCdelta and, nitrobenzylthioinosine (NBTI) binding and mENT1 mRNA levels were measured. The role of PKC in regulating mENT1 was further investigated using phorbol ester (100 nM, 18 h) and a dominant negative PKC construct, pSVK3PKC1-401. RESULTS HL-1 cells have typical cardiomyocyte responses to hypoxia based on cell viability, LDH release, glucose uptake and GLUT protein levels. Hypoxia (8-20 h) down-regulates mENT1-dependent adenosine uptake, NBTI-binding and PKC but not PKCdelta in HL-1 cells. Abrogation of PKC activity using chronic phorbol ester or a dominant negative PKC mimicked the effect of hypoxia on adenosine uptake suggesting that PKC is involved in regulation of mENT1. Hypoxia (4 h) decreases mENT1 mRNA, which returns to basal levels by 20 h. CONCLUSIONS Chronic hypoxia down-regulates mENT1 activity possibly via PKC. Hypoxia and PKC also regulate mENT1 RNA levels. Cardiomyocytes may regulate mENT1 (via PKC) to modulate release and/or uptake of adenosine. However, the relationship between mENT1 mRNA levels, protein levels and functional transport is complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inosine and equilibrative nucleoside transporter 2 contribute to hypoxic preconditioning in the murine cardiomyocyte HL-1 cell line.

The purine nucleoside adenosine is a physiologically important molecule in the heart. Brief exposure of cardiomyocytes to hypoxic challenge results in the production of extracellular adenosine, which then interacts with adenosine receptors to activate compensatory signaling pathways that lead to cellular resistance to subsequence hypoxic challenge. This phenomenon is known as preconditioning (P...

متن کامل

Physiological role of adenosine and its receptors in tissue hypoxia-induced

It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...

متن کامل

Inhibition of glucose uptake in murine cardiomyocyte cell line HL-1 by cardioprotective drugs dilazep and dipyridamole.

Inhibition of adenosine reuptake by nucleoside transport inhibitors, such as dipyridamole and dilazep, is proposed to increase extracellular levels of adenosine and thereby potentiate adenosine receptor-dependent pathways that promote cardiovascular health. Thus adenosine can act as a paracrine and/or autocrine hormone, which has been shown to regulate glucose uptake in some cell types. However...

متن کامل

Characterization of mENT1Delta11, a novel alternative splice variant of the mouse equilibrative nucleoside transporter 1.

Mammalian cells require specific transport mechanisms for the cellular uptake and release of endogenous nucleosides such as adenosine, and nucleoside analogs used in chemotherapy. We have identified a novel splice variant of the mouse equilibrative nucleoside transporter, mENT1, that results from the exclusion of exon 11 during pre-RNA processing. This variant encodes a truncated protein (mENT1...

متن کامل

Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function.

HL-1 cells are currently the only cardiomyocyte cell line available that continuously divides and spontaneously contracts while maintaining a differentiated cardiac phenotype. Extensive characterization using microscopic, genetic, immunohistochemical, electrophysiological, and pharmacological techniques has demonstrated how similar HL-1 cells are to primary cardiomyocytes. In the few years that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cardiovascular research

دوره 61 4  شماره 

صفحات  -

تاریخ انتشار 2004